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Abstract—Existing multi-modal learning methods often strug-
gle with modality imbalance in real-world applications, leading to
suboptimal performance. A core reason is that under the multi-
modal joint learning paradigm, the dominant modality tends to
control the learning process, leaving non-dominant modalities
insufficiently learned and underutilized. Some attempts naturally
introduce additional uni-modal objectives to alleviate this issue.
However, they overlook the problem of optimization conflicts
between multi-modal objectives and uni-modal objectives, which
adversely impact overall performance. To address this challenge,
we propose Multi-modal learning with Coordinative Uni-modal
assisTance (MCUT), which incorporates collaborative uni-modal
tasks alongside multi-modal tasks. Specifically, it leverages a
meta-optimization approach to maximize the inner product of
gradients originating from both tasks, alleviating optimization
conflicts. Moreover, based on gradient fusion analysis, we enhance
the assistance of uni-modal tasks by weighting the phases
of meta-optimization, further boosting performance. Experi-
ments on multiple multi-modal datasets demonstrate MCUT’s
superiority over existing methods. The code is available in
https://github.com/njustkmg/ICME25-MCUT.

Index Terms—Multi-modal Learning, Modality Imbalance,
Meta-Optimization

I. INTRODUCTION

Multi-modal information can provide a more detailed and
comprehensive data representation than uni-modal sources,
attracting widespread attention in multiple fields [1], [2]. The
aim of multi-modal learning is to integrate information from
different modalities to achieve better results than uni-modal
methods, prompting the development of many multi-modal
learning techniques [3], [4].

Recent studies [5], [6] have revealed a prevalent phe-
nomenon termed “modality imbalance” in multi-modal data
scenarios, where a dominant modality controls the optimiza-
tion process, thereby degrading model performance. In certain
cases, multi-modal learning may even perform worse than uni-
modal learning [5]. To address this challenge, [6]–[8] proposed
modality modulation strategies that manually or dynamically
adjust modality-specific learning rates. In contrast, methods
incorporating additional uni-modal objectives [9], [10] have
shown superior performance. As illustrated in Figure 1, the
simple introduction of additional uni-modal losses, namely
Multi-Loss, can achieve performance comparable to OGM-
GE, a state-of-the-art single-loss rebalancing method. Accord-
ing to [9], effective multi-modal learning necessitates con-
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sideration of both paired features, learned from cross-modal
interactions, and uni-modal features, independently acquired
from each modality. However, methods like Multi-Loss still
fail to address the issue of insufficient learning by uni-
modal encoders, where each modality branch performs worse
than its best uni-modal result, ultimately degrading overall
performance. The primary challenge arises from optimization
conflicts during the joint training of multiple objectives, mak-
ing it difficult to determine a set of model parameters that can
effectively satisfy all objectives simultaneously.
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Fig. 1: Performance of the multi-modal method’s predic-
tions and its individual modality branches on the Kinetics-
Sound [11] dataset, designed for action classification tasks.
“Multi-Loss” is a basic approach where all losses are directly
summed with equal weight. “Best Audio/Video” refers to the
performance of each modality trained independently on its uni-
modal encoder.

To tackle this challenge, we propose a novel framework
called Multi-modal learning with Coordinative Uni-modal
assisTance (MCUT), which integrates collaborative uni-modal
tasks with multi-modal tasks to more effectively learn paired
and uni-modal features. Specifically, we begin by treating
the learning of features as two core phases within a meta-
optimization framework. During meta-training phase, we focus
on extracting paired features from multi-modal objectives.
In meta-testing phase, we validate and optimize uni-modal
features using the same samples. This approach prevents over-
reliance on the modality that performs well during meta-
training and ensures effective learning of uni-modal features.



Theoretically, this method mitigates interference with the
learning of the original paired features by maximizing the
inner product of gradients from both tasks. Moreover, based
on gradient fusion analysis, we dynamically enhance the
assistance of uni-modal tasks by weighting the meta-training
and meta-testing phases. To accomplish this, we continuously
compute performance indicators for both tasks to adjust their
relative weights. Consequently, we can ensure reliable collab-
orative learning between paired and uni-modal features.

II. RELATED WORK

A. Imbalanced Multi-modal Learning

Although many multi-modal methods have proven effec-
tive, [6] has identified a modality imbalance issue in multi-
modal joint training, where optimization dominated by one
modality leads to suboptimal model performance. Various
strategies [5], [6], [9], [10], [12]–[15] have been proposed to
overcome modality imbalance in multi-modal learning. [6],
[12] attempt to address this by employing a dynamic gradient
modulation strategy to reduce the learning rate of the dominant
modality, thereby mitigating its suppression of learning from
non-dominant modalities. [13] computes the cross-modal
cooperation strength based on Shapley values to balance each
modality. However, these methods rely on hyper-parameter
tuning and primarily focus on gradient modulation under a
multi-modal objective, where the learning of uni-modal fea-
tures is not actively considered, resulting in suboptimal perfor-
mance. [14] uses an alternating modality learning architecture,
which makes it incompatible with existing fusion methods and
multi-modal structures. Furthermore, [5], [9], [10] introduce
additional uni-modal structures and tasks into the network to
emphasize the learning of uni-modal features, but overlooks
the issue of inconsistent optimization between different tasks.
Therefore, in this work, we propose the MCUT algorithm,
which aims to ensure paired feature learning in multi-modal
tasks while collaboratively and reliably optimizing uni-modal
features in uni-modal tasks.

B. Meta Learning

Meta-learning, also known as learning to learn, aims to
enable models to quickly adapt to new tasks by leveraging past
learning experiences. Its essence lies in the development of
learning algorithms that can be widely applicable to new tasks,
rather than just enhancing performance for individual tasks.
MAML [16] is a milestone in this research direction, widely
adopted for its ability to provide effective parameter initializa-
tion for new tasks. [17] Integrates meta-learning into domain
generalization, achieving comprehensive consideration of the
transition between source and target domains during training.
Additionally, in cross-modal alignment scenarios, [18] applies
meta-learning to optimize modal representation spaces by
using strongly and weakly paired cross-modal data. [19]
trains a meta-model to transfer target-specific information
from the language space to the image space. In contrast
to previous approaches, our work explores how to execute
meta-learning frameworks for multi-modal classification tasks,

enabling rapid adaptation to additional uni-modal tasks for
learning uni-modal features while ensuring the effectiveness
of learning original paired features. We pioneer the integration
of meta-optimization with multi-modal classification tasks to
tackle the challenge of modality imbalance.
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Fig. 2: Overall framework of our proposed MCUT strategy.

III. PROPOSED METHOD

A. Multi-modal Network

Let training set D = {(x1,y1), (x2,y2), · · · , (xN ,yN )},
where each example xi consists of M modalities, i.e., xi =
{xm

i }Mm=1, and the class label yi ∈ RC , with C representing
the number of classes. The objective is to train a model
using this dataset D to accurately predict yi. Most existing
multi-modal joint learning methods [5], [6] typically employ a
model-agnostic approach, utilizing multiple branches for final
prediction. These branches consist of M feature encoders,
{φm(xm

i ;θm
f )}Mm=1, where m-th encoder aims to extract

representations from the xm
i data, with learning parameters

θm
f . Then, the multi-modal fusion operation can be denoted

as φ(xi) = [φ1(x1
i ), φ

2(x2
i ), · · · , φM (xM

i )]⊤. Subsequently,
the fused features are inputted into the classifier h. The output
in the multi-modal model can be expressed as:

q(xi) = h(φ(xi;θf );θc), (1)

where θf and θc are the learning parameters representing φ
and h, respectively. Finally, the objective of the vanilla multi-
modal joint model is to train the θf ,θc to predict y based
on x, by minimizing the loss between the prediction and the
ground truth:

L = − 1

N

N∑
i=1

y⊤
i log q(xi). (2)

However, [6] discover that this simultaneous optimization of
all encoders using multi-modal joint learning paradigm would
be affected by modality imbalance, resulting in insufficient
optimization of non-dominant modality, impairing the overall
model performance. Intuitively, we can additionally incorpo-
rate uni-modal tasks to assist in learning uni-modal features.
The multi-loss objectives are:

argmin
θ

L(θ) +
M∑

m=1

Lm(θm), (3)



where Lm(θm) = − 1
N

∑N
i=1 y

⊤
i log qm(xm

i ), qm(xm
i ) =

h(φm(xm
i ;θm

f );θc) represents the prediction for the uni-
modal task. For convenience, we denote the combination of
parameters θf and θc as θ, and the combination of parameters
θm
f and θc as θm. Note that we use the same classifier for

uni-modal predictions, and during execution, we employ zero-
padding for other modality features, rendering them inactive.
The objective of multi-modal joint learning is to learn paired
features across multiple modalities, while uni-modal learning
aims to capture uni-modal features to mitigate modality im-
balance. Nevertheless, directly optimizing the average loss of
these two objectives may lead to adverse effects. One reason
is gradient conflict [20]. Gradients on the shared parameters
may point in conflicting directions, leading to inconsistent
optimization. The interference among losses reduces the ability
of encoders in the multi-modal network to effectively learn
paired features or uni-modal features, ultimately affecting
overall performance. To address this issue, we propose MCUT,
and its overall framework, as shown in Figure 2, consists
of two main components: Coordinating Uni-modal Tasks and
Dynamic Enhancement Assistance.

B. Coordinating Uni-modal Tasks

Drawing inspiration from meta-learning [21] strategies, we
employ meta-optimization to coordinate multi-modal tasks
and uni-modal tasks. Unlike previous approaches that divide
samples into meta-train and meta-test sets, we execute multi-
modal and uni-modal tasks separately on the same set of
samples during both the meta-train (multi-modal joint learn-
ing) and meta-test (uni-modal learning) stages. Our goal is
to maximize the inner product of gradients from both tasks,
thereby ensuring consistent learning of paired features and
uni-modal features. To elucidate the role of meta-optimization
in coordinating optimization between the tasks, we will first
examine the optimization equation:

argmin
θ

L(θ) + β
M∑

m=1

Lm(θm − α∇θmL(θ)), (4)

where ∇θmL(θ) represents the gradient of the loss function
L(θ) with respect to the parameter θm, and α and β are
hyper-parameters, used for the meta-learning rate and for
weighting meta-train and meta-test, respectively. Our goal is
to minimize the loss L obtained during meta-train and meta-
test loss Lm obtained after one iteration of meta-train, where
θ̂
m
← θm − α∇θmL(θ). Here, we refrain from utilizing

higher-order gradients, as the first-order gradients suffice to
effectively guide parameter updates while economizing on
computational time. Intuitively, meta-test is employed to tune
the parameters after meta-train, enabling the model to perform
well on its tasks. In theory, we can employ a first-order Taylor
expansion for the uni-modal loss during meta-test phase:

Lm(z) = Lm(a) +∇aLm(a) · (z− a), (5)

where z is a vector, a is a value near z that serves as the base
point for the expansion of the function, and Lm(a) is a scalar.

In this context, we consider θm − α∇θmL(θ) and θm as z
and a respectively. Subsequently, we obtain:

Lm(θm − αgm) = Lm(θm) + ĝm · (−αgm), (6)

where we simplify ∇θmL(θ) as gm and the gradient of
Lm(θ) with respect to θm, ∇θmLm(θm), as ĝm. The original
objective function, Equation (4), can be modified to:

argmin
θ

L(θ) +
M∑

m=1

(βLm(θm)− βα(gm · ĝm)). (7)

This optimization objective reflects our desire to minimize
both the multi-modal loss and the uni-modal loss while also
aiming to maximize the inner product of gradients from both
tasks. The vector dot product operation can be viewed as the
modulus of two vectors multiplied by the cosine of their angle.
gm · ĝm suggests that if the gradient directions of the two tasks
are similar, the loss will be relatively small. Hence, we can
employ meta-optimization strategies to learn paired and uni-
modal features in a consistent manner.

C. Gradient Fusion Analysis

In this section, we further provide an analysis of gradient
fusion under gradient conflicts. Assume multi-modal objective
function f1 and uni-modal objective function f2 share two
learnable parameters θm of m-th modality. Total loss degra-
dation is calculated when updating θm using the First-order
Taylor expansion:

∆L = ∆fg1+g2
1 +∆fg1+g2

2 ≈ −ϵ(g21 + g22 + 2g1g2) + o(ϵ2), g1 · g2 < 0

(8)
where (g1, g2) denote (∇θmf1,∇θmf2), ϵ is low learning
rate. PCGrad [20], a gradient de-conflict method, enhances the
performance of multi-objective models by employing gradient
re-projection. Specifically, g1 and g2 are reformulated as
ĝ1 =

(
g1 − g1·g2

∥g2∥2 g2

)
and ĝ2 =

(
g2 − g2·g1

∥g1∥2 g1

)
, respectively.

∆L resulting from re-projecting two gradients is:

∆Lg2⇋g1 = −ϵ(g21 + g22 −
(g1g2)

2

∥g1∥2 − (g1g2)
2

∥g2∥2 + 2g1g2((cosα)
2 − 1)) + o(ϵ2)

(9)
If we only reproject g2, ∆Lg2→g1 = −ϵ(g21+g22−

(g1·g2)2
∥g1∥2 )+

o(ϵ2). The expression for ∆Lg1→g2 is formulated similarly.
Given that ∥g1∥ > ∥g2∥, ∆Lg2⇋g1 > ∆Lg2→g1 only if ∥g2∥

∥g1∥ >
−0.5 cosα
(sinα)2 ; otherwise, re-projecting the smaller gradient g2 is

preferable to adjusting both gradients. Therefore, the optimal
gradient fusion strategy for θm under gradient conflict is:

gf =

{
(1− ∥g1∥

∥g2∥ cosα)g1 + (1− ∥g2∥
∥g1∥ cosα)g2, if ∥g2∥

∥g1∥ > −0.5(cosα)
(sinα)2

(1− ∥g1∥
∥g2∥ cosα)g1 + g2, otherwise.

(10)
The above expression indicates that a larger gradient should

always be amplified, i.e., gf = η1g1+η2g2 with η1 > η2 > 0.
Assuming better performance corresponds to relatively smaller
loss and gradient magnitude, tasks with better performance
should be assigned a smaller gradient weight.



D. Dynamic Enhancement Assistance

Based on the above conclusions, we re-weight each task
during the training process based on its performance. To ensure
a fair comparison of the model’s performance on uni-modal
and multi-modal tasks, we design performance evaluation
indicators for multi-modal scenarios:

sJ =
∑
i∈Bt

softmax (q(xi))ŷi
, sE =

∑
i∈Bt

softmax (q̄(xi))ŷi
,

(11)
where q̄(xi) represents the ensemble of predictions from
all uni-modal predictions, i.e., 1

M

∑M
m=1 q

m(xm), and ŷi =
argmax(yi). Bt represents the mini-batch of samples ran-
domly selected at the t-th step. Subsequently, to reduce
fluctuations, we employ the momentum update method, which
evaluates the performance indicators by accumulating the
historical contribution. We take sJ as an example. The new
performance indicator can be represented as:

ŝJ = λŝJ + (1− λ)sJ , (12)

where λ is the attenuation factor. Based on the performance
indicators, we design the weight factor ω, which varies with
training iterations, as follows:

ω =
2 · exp

(
ŝJ/τ

)
exp (ŝJ/τ) + exp (ŝE/τ)

, (13)

where ω ∈ (0, 2), τ is a scaling factor used to adjust the
sensitivity of performance indicators to weight allocation. For
the same ŝJ and ŝE , a higher value of τ will make ω close
to 1, and vice versa. Finally, integrating with Equation (4),
we replace hyper-parameter β with ω and can formulate the
parameter update strategy for the MCUT model as follows:

θt+1 = θt−η
∂
(
L(θt) + ω

∑M
m=1 Lm

(
θm
t − α∇θm

t
L(θt)

))
∂θt

.

(14)
We also provide pseudo-code in supplemental material.

IV. EXPERIMENT

In this section, we focus on the results of multi-modal
classification, ablation study and optimization analysis due
to page limitations. Implementation details and additional
experiments, such as comparisons of multi-task strategies,
intricate framework study, computational cost evaluations, and
visualizations, are provided in the supplementary material.

A. Experimental Setup

Datasets and Baselines. Building on previous research ad-
dressing modality imbalance [6], [10], we validate our ap-
proach using both the Kinetics-Sound (KS) [11] and CREAM-
D [22] datasets, covering audio and video modalities. To
further assess our method, we expand in two directions: ana-
lyzing text-image modalities using the Multi-Modal Sarcasm-
Detection (MMSD) [23] and Twitter-15 [24] datasets, and
incorporating the NVGesture dataset [25] to explore fusion
beyond two modalities. For NVGesture, we follow data

preparation steps from [26] and conduct pre-trained train-
ing. The imbalance multi-modal learning methods include
OGR-GB [5], OGM-GE [6], Greedy [27], DOMFN [28],
MSLR [12], PMR [10], AGM [13],MLA [14] and Recon-
Boost [29].
Evaluation Metrics. Following [6], we use accuracy (ACC)
and mean Average Precision (mAP) to evaluate audio-video
datasets. For the text-image and NVGesture dataset, as sug-
gested by [23], [24], [27], we utilize accuracy (ACC) and
Macro F1-score (Mac-F1). ACC measures the proportion of
concordance between predicted outcomes and true labels,
Mac-F1 computes the average F1 scores for each category,
and mAP measures the average precision for each category.

B. Comparison with Multi-modal Methods

Comparison with imbalanced multi-modal methods. To
validate the effectiveness of our approach, we compare MCUT
against strategies specifically designed to overcome modality
imbalance across various types of datasets. We uniformly
employ prediction summation fusion in NVGesture and fea-
ture concatenation fusion in other datasets as the baseline.
Considering the limitations of specific comparative methods
with two modalities, we focus on the NVGesture dataset, in-
cluding methods like OGR-GB, MSLR, AGM, MLA, Recon-
Boost. The results are depicted in Tables I. Uni-Modal1/Uni-
Modal2/Uni-Modal3 represent Audio/Video/-, Text/Img/-, and
RGB/OF/Depth for different types of datasets, respectively.
We have the following findings: (1) In the CREMA-D and
Twitter-15 datasets, the performance of the optimal uni-
modal model clearly exceeds that of the basic multi-modal
joint learning (Baseline). This gap can be attributed to the
widespread issue of modality imbalance. (2) All methods
designed to address modality imbalance demonstrate improved
performance compared to the baseline. This finding not only
underscores the detrimental effects of modality imbalance on
performance but also validates the effectiveness of these meth-
ods. (3) MCUT consistently achieves superior performance
across nearly all metrics, highlighting the effectiveness of our
approach. Notably, MCUT shows a significant improvement
on the CREMA-D dataset, with an 18.54/2.42 increase in
Accuracy compared to the Baseline/Second-Best approach.
Applicable to Other Fusion Strategies. We conduct a
detailed investigation of both vanilla and specially-designed
fusion methods, examining their performance both before
and after incorporating the MCUT strategy, by observing the
changes in multi-modal results as well as the outcomes of
the uni-modal branches. The fusion methods include: feature
concatenation (Concat), affine transformation (FiLM) [30],
multi-layer LSTM (ML-LSTM) [31], channel-wise fusion
(MMTM) [26], prediction summation (Sum), and prediction
weighting (Weight) [3], which are further categorized into
Early Fusion (Concat, FiLM, ML-LSTM), Hybrid Fusion
(MMTM), and Late Fusion (Sum, Weight). As shown in
Table II, the integration of MCUT into multi-modal fusion
frameworks consistently enhances their performance. Further-
more, MCUT effectively reduces the performance gap across



TABLE I: Comparison between MCUT with other SOTA methods on four datasets. The best performances are highlighted in
bold. The underscore symbol represents the second best performance.

Methods KS CREMA-D MMSD Twitter-15 NVGesture
ACC mAP ACC mAP ACC Mac-F1 ACC Mac-F1 ACC Mac-F1

Uni-Modal1 54.12 56.69 63.17 68.61 81.36 80.65 73.67 68.49 78.22 78.33
Uni-Modal2 55.62 58.37 66.26 74.14 71.81 70.73 58.63 43.33 78.63 78.65
Uni-Modal3 - - - - - - - - 81.54 81.83
Baseline 64.55 71.30 63.31 68.41 82.86 82.40 70.11 63.86 82.57 82.68
OGR-GB 67.10 71.39 64.65 68.54 83.35 82.71 74.35 68.69 82.99 83.05
OGM-GE 66.06 71.44 66.94 71.73 83.23 82.66 74.92 68.74 - -
Greedy 66.52 72.81 66.64 72.64 - - - - - -
DOMFN 66.25 72.44 67.34 73.72 83.56 82.62 74.45 68.57 - -
MSLR 65.91 71.96 65.46 71.38 84.23 83.69 72.52 64.39 82.37 82.39
PMR 66.56 71.93 66.59 70.30 83.60 82.49 74.25 68.60 - -
AGM 66.02 72.52 67.07 73.58 84.02 83.44 74.83 69.11 82.78 82.84
MLA 70.40 74.13 79.43 85.72 84.26 83.48 73.52 67.13 83.73 83.87
ReconBoost 70.85 74.24 74.84 81.24 84.37 83.17 74.42 68.34 84.13 86.32
MCUT 72.67 78.61 81.85 88.97 85.14 84.61 75.12 69.23 84.43 84.77

TABLE II: Various fusion methods combined with MCUT.
† indicates that MCUT has been applied. The evaluation
metric is Accuracy. The “GAP” column represents the absolute
performance gap between Audio/Text and Video/Img.

Methods CREMA-D Twitter-15
Multi Audio Video GAP Multi Text Image GAP

Concat 63.31 62.50 18.81 43.69 70.11 72.42 46.57 25.85
Concat† 81.85 62.76 68.81 6.05 75.12 73.48 58.24 15.24
FiLM 66.26 61.82 30.37 31.45 72.03 72.80 50.72 22.08
FiLM† 74.05 63.70 61.15 2.55 74.34 72.99 57.85 15.14
ML-LSTM 65.05 61.02 22.31 38.71 73.67 73.19 56.70 16.49
ML-LSTM † 80.10 63.67 68.01 4.34 74.73 73.28 58.05 15.23
MMTM 66.13 60.34 28.09 32.25 - -
MMTM† 76.88 60.34 64.51 4.17 - -
Sum 63.44 62.09 21.77 40.32 73.00 73.09 54.67 18.42
Sum† 78.22 62.76 65.05 2.29 75.02 73.87 58.24 15.63
Weight 66.53 62.90 26.88 36.02 72.42 72.22 56.21 16.01
Weight† 78.09 63.97 65.45 1.48 75.89 73.86 58.63 15.23

modalities and fully leverages the potential of each modality,
thereby addressing the challenge of modality imbalance.

TABLE III: The component ablation experiments of the
MCUT. The symbols “CUT” and “DEA” indicate whether the
two components are applied during the training process. The
evaluation metric is Accuracy.

Dataset Modal CUT DEA CUT DEA CUT DEA CUT DEA
✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓

KS
Multi 66.05 71.04 68.96 72.67
Audio 52.11 54.00 53.65 55.04
Video 40.39 53.07 44.41 55.12

CREMA-D
Multi 66.31 79.03 70.56 81.85
Audio 60.48 62.09 61.02 62.76
Video 48.79 65.05 50.80 68.81

MMSD
Multi 83.97 84.59 84.55 85.14
Text 82.15 83.39 83.22 83.39
Img 70.25 72.06 71.27 72.14

Twitter-15
Multi 73.77 74.73 74.34 75.12
Text 73.67 74.15 73.77 74.15
Img 53.13 57.47 56.21 58.24

NVGesture

Multi 82.78 84.03 83.59 84.43
RGB 61.20 77.59 71.57 79.87
OF 63.07 78.01 72.82 80.29

Depth 71.36 81.74 74.27 81.74

C. Ablation Study

We conduct a component ablation analysis to evaluate the
significance of each components, i.e., Coordinated Uni-modal
Tasks (CUT) and Dynamic Enhancement Assistance (DEA).
Table III presents the experimental results. We can observe
that (1) Employing CUT significantly boosts performance
by effectively alleviating conflicts between paired and uni-
modal feature learning through meta-optimization, thereby
enhancing both multi-modal and uni-modal results. (2) The
DEA module, by solely re-weighting tasks, still enhances
multi-modal learning performance as it enables better gradient
integration. (3) By incorporating both components, MCUT
achieves the best results, demonstrating the efficacy of each
component in multi-modal learning.

D. Robustness Analysis of the Pre-trained Model

TABLE IV: Test accuracy on the Sarcasm and Twitter-15
Datasets, with the encoder using the pre-trained CLIP.

Method MMSD Twitter-15
Multi Text Image Multi Text Image

CLIP 83.11 82.15 74.82 72.52 71.75 54.48
CLIP+MLA 84.45 83.19 77.45 73.95 72.37 56.53

CLIP+MCUT 85.14 83.64 78.12 74.83 72.90 63.06

We leverage the robustness of the large-scale vision-
language pre-trained model CLIP [33] on the MMSD and
Twitter-15 datasets. For this purpose, the image and text
encoders are replaced with the ViT-B/32 pre-trained encoders
from CLIP, followed by independent fine-tuning of the model
on the MMSD and Twitter-15 datasets. As shown in Table IV,
“CLIP+MLA” and “CLIP+MCUT” represent the MLA-based
approach and our proposed method, respectively. Based on
the results, we conclude the following: (1) Both CLIP+MLA
and CLIP+MCUT consistently outperform the baseline CLIP
model across all metrics, effectively addressing modality im-
balance; (2) Our proposed method surpasses MLA by lever-
aging coordinated assistance from uni-modal tasks.

E. Analysis of Optimization Process

We investigate the changes in the cosine similarity of
gradients for both tasks before and after the application of



the MCUT strategy. As illustrated in Figure 3, naive learn-
ing—achieved by simply summing multiple losses—results
in significant optimization inconsistencies, particularly in the
early stages of training. The introduction of the MCUT strat-
egy effectively mitigates this issue, leading to a smoother
and more consistent optimization process for both tasks. This
underscores the reliability and effectiveness of MCUT in
enhancing multi-modal learning.

Fig. 3: The cosine similarity of gradients for the two objectives
in the video encoder of CREMA-D.

V. CONCLUSION

In this study, we propose the MCUT strategy to address
the issue of modality imbalance in multi-modal joint learning.
Our core idea is to introduce uni-modal learning tasks that
can be coordinated for optimization alongside multi-modal
tasks, ensuring enhanced uni-modal feature learning while pre-
serving paired feature learning. Specifically, we employ meta-
optimization and dynamic enhancement assistance strategies
to more effectively support the learning of both tasks. Finally,
extensive experiments demonstrate the superiority of MCUT
in alleviating modality imbalance.
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